
VACUL		LZE	Specification				Item no.: T60404-N4641-X900				
					ensor for IC-C EC62752-2016		Cor	Date: 11	.10.2021		
K-No.:	26574										
Customer: Standard type							Page 1	of 7			
DescriptionCharacteristics• Fluxgate current sensor with toroidal core• Excellent accuracy • AEC-Q qualified components • Switching open-collector outputs 						Applications Mainly used for stationary and mobile applications: • IC-CPD • Wallbox					
				103001175 //	EP2813856		b // o		11		
	trical c		<u>Ratings</u>			min.	typ.	max.	Unit		
IP					nt (1phase / 3pha	se)		80 / 40	A		
Ι _{ΔN1}			Rated residual c	• •			6		mA DC		
ΔN2			Rated residual o	perating cur	rent 2		30		mA rms		
	, tolerance		Frip tolerance 1			4	5	6	mA DC		
ΙΔΝ2,	, tolerance		Frip tolerance 2			20		30(1) / 60(2)	mA rms		
Spw	/M-OUT	(Scaling factor of for monitoring	purpose or	nly!)		3.33		%/mA		
I _{ARI} ,	1/2 (Fig.1)		Recovery currer absolute value		N1/I∆N2		2.5 / 10		mA		
A		Dumo					(1) f =	DC to 1kHz (2) f =	1kHz to 2kHz		
		- Dyna	mic performa			000		000			
I∆N,n	nax		Max. measurin	"		-300	0.0	+300	mA		
X			Resolution (@		<i>(</i> C)		< 0.2		mA		
tr (Fi			Response time			DC	Accordi	ng to IEC62752:201			
	(Fig.4)		Frequency rang	ye		DC		2	kHz		
	eral da	<u>ta</u>									
ϑA			Ambient operat			-40		85	°C		
9 Stor	rage		Ambient storag	je temperatu	re ⁽⁴⁾	-40		85	°C		
m			Mass				21		g		
Vcc	;		Supply voltage			4.8	5	5.2	V		
Icc			Consumption c			38		45	mA		
Sclea			Clearance (prin		• /			if isolated cable is u			
Scree	ep, ps		Creepage (prin			r		if isolated cable is u	used ⁽⁵⁾		
FIT			EN/IEC 61709 (MIL-HDBK-21		5)		152 (634		fit		
 ⁽³⁾ Switching time of a standard relay (t = 20ms) is considered. ⁽⁴⁾ see VAC M-sheet 3101; storage temperature inside cardboard packaging ⁽⁵⁾ Constructed, manufactured and tested in accordance with IEC60664-1:2007 Isolated wires are preferred. If isolated primary conductors are used, the isolation coordination is according to: Reinforced insulation, Insulation material group 1, Pollution degree 2, altitude ≤ 4000m and overvoltage category II. ⁽⁶⁾ The results are valid under following conditions: 55°C mean component ambient temperature by continuous operation (8760h per year); Environment condition: ground mobile, no dust or harmful substances, according to IEC61709; Fit equals one failure per 10^9 component hours. Ceneral description of sensor function: The Sensor is sensitive to AC and DC current and can be used for fault current detection in IC-CPD applications. The Sensor detects AC and DC fault currents according to IEC62752:2016. In the event of a DC fault current, PIN 3 will change it's state from a low level (GND) to high impedance level. In event of an AC current fault, PINs 3 and 4 will change state from a low level (GND) to a high impedance level. Error conditions (e.g. an internal error) are signaled on PIN 1 (ERROR-OUT). 											
Datum	Nome	Indov	Äpdorupa								
Datum 11.10.2021	Name BZ	Index 84	Änderung Patents added on	choot 1 CN 01	-290						
23.01.20	BZ	84 84			-290 p (Clearance, unisola	ted primary to p	orimary) delete	ed. Minor change.			
	R&D-PD	-NPI D	Designer: MB		MC-PM: BZ				ed by: SB		

Copying of this document, disclosing	it to third portion or uning	, the contents there f	or any nurnage without over	no writton outborization by yoo i	llogolly forbiddon	Any offendere ere lieble te nev el
	It to thing parties of using		or any purposes without expre	ess written authorization by use i	negaliy lorbidden.	Mily ullenders are hable to pay a
		·	21 I I		0,	, , ,
relevant damages						
Televant damages						

PIN description:

PIN no.	Description					
PIN 1 → ERROR-OUT (open collector output)	If no system fault is detected, the output PIN 1 is a low level (GND). If a system fault is detected, PIN 1 is high impedance. In this case, PINs 3 and 4 will be set to a high impedance state (see tab. 1).					
	A function test including an offset measurement (this value is stored in EEPROM for further calculation) is activated if this PIN is connected to GND for a period of 30ms to 1.2s. If the PIN is set to GND less than 30ms or more than 1.2s, no function test will be performed.					
PIN 2 \rightarrow TEST-IN (refer to Fig. 2)	Attention: During the functional test and offset measurement, no differential current may flow.					
	To ensure high accuracy of the sensor this test should be activated at regular intervals (e.g. at startup, before measuring).					
	If a push-pull switch is used, the voltage range must be 0V5V.					
PIN 3 \rightarrow X6-OUT (open collector output)	If the residual current is below 6mA dc and no system fault occurs the output on PIN 3 is a low level (GND). In any other case output PIN 3 is in a high impedance state. If PIN 4 is high impedance, PIN 3 will also be set to high impedance (see tab. 1).					
PIN 4 → X30-OUT (open collector output)	If the residual current is below the 30mA rms and no system fault occurs the output on PIN 4 is a low level (GND). In any other case PINs 3 and 4 is in a high impedance state (see tab. 1).					
PIN 5 \rightarrow GND	Ground connection					
$PIN 6 \rightarrow VCC$	Positive supply voltage					
PIN 7 \rightarrow PWM-OUT	Acc. to the DC component of residual current a duty-cycle with f=8kHz is generated. This is for monitoring purposes only and is not safety function! Refer to S _{PWM-OUT} = 3.33%/mA					
$PIN \ 8 \rightarrow N.C.$	Not connected					
: R&D-PD-NPI D Designer: MB	MC-PM: BZ Released by: S					

VACUUMSCHMELZE	Specification Item no.: To			60404-N4641-X900		
	Differential Current Sensor for IC-CF acc. to the standard IEC62752-2016			Date: 11.10).2021	
K-No.: 26574						
Customer: Standa				Page 3 o	of 7	
Typical applica	power contactor 5 driver circuit WORKING WOTAGE PIN 1 Differential Sensor for IC - CPI	PIN 2 +5V PIN 6 Inductar I I PIN 8 n.c.	Load → The >220µH	PE		
Absolute maximum			Min Typ		Unit	
V _{CE} I _C	Collector-Emitter voltage (PINs 1, 3 a Collector current (PINs 1, 3 and 4)	nd 4)		40 50	V mA	
Vcc	Maximum supply voltage (without fun		-0.3	7	V	
Umax	Maximum rated voltage of primary co (AC rms)	nductors		250	V	
VTEST-IN, low VTEST-IN, high	TEST-IN Input Voltage, low level TEST-IN Input Voltage, high level		0 2.5	0.6 5	V V	
⁽⁵⁾ Stresses above t Exposure to these	hese ratings may cause permanent damage. conditions for extended periods may degrade device rel n of the device at these or any other conditions beyond	iability. those		Ŭ	·	
Editor.: R&D-PD-NPI I	D Designer: MB MC-PM: BZ			Released b	y: SB	

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages

Specification

Item no.: T60404-N4641-X900

Differential Current Sensor for IC-CPD acc. to the standard IEC62752-2016

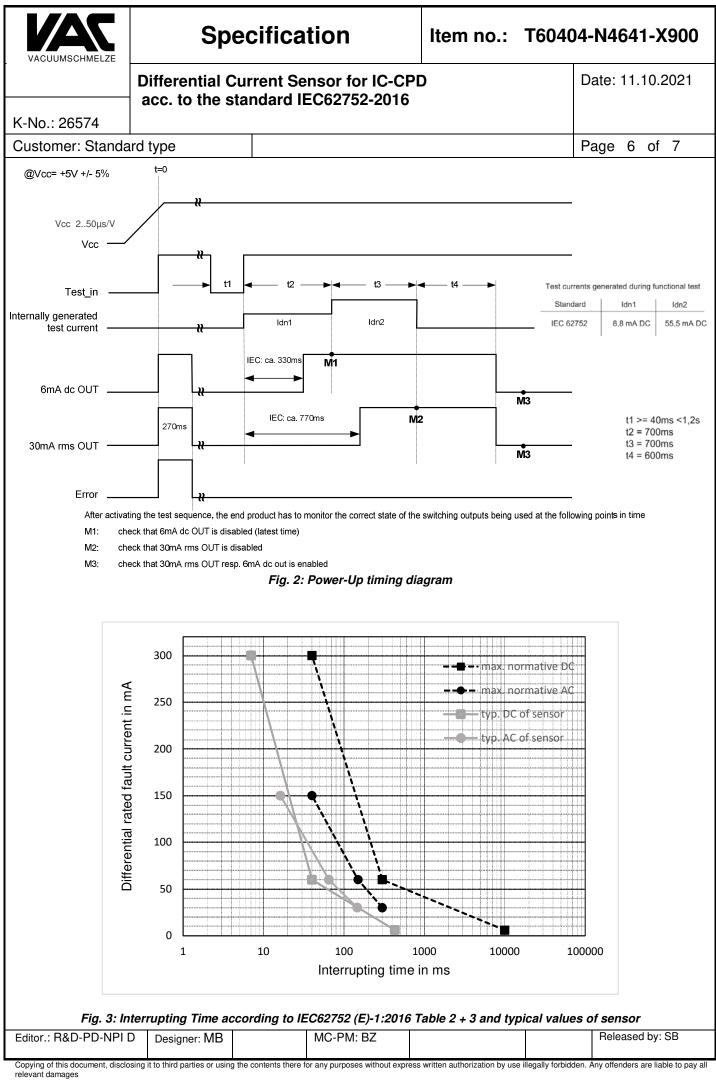
Date: 11.10.2021

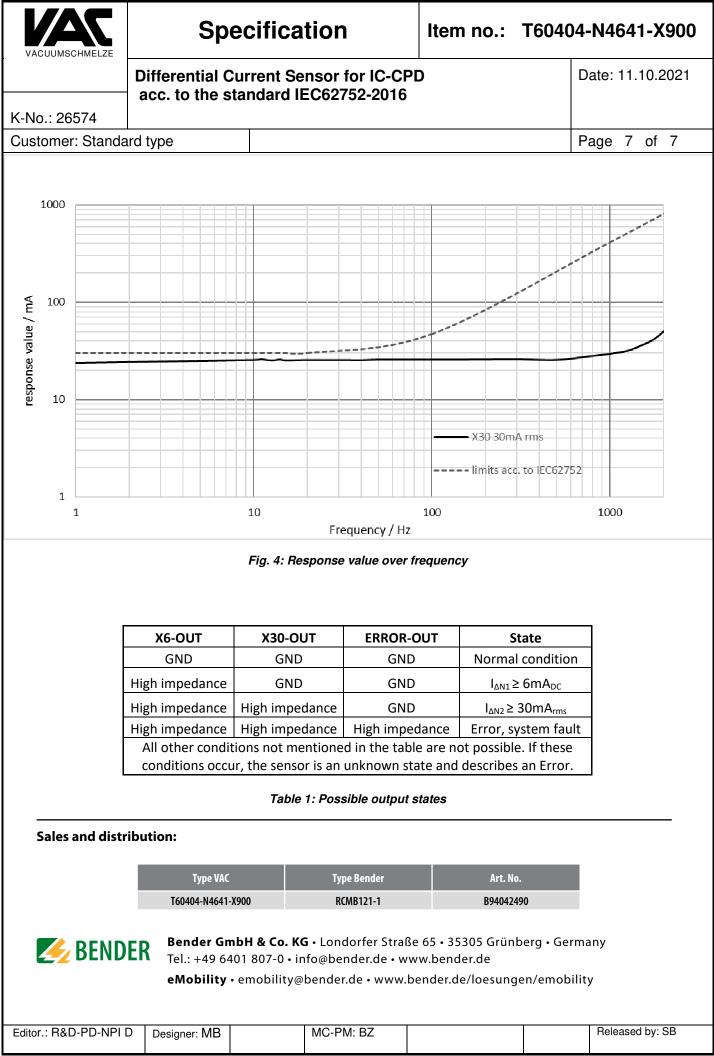
K-No.: 26574

Customer: Standard type

Page 4 of 7

		Min.	Max.	Unit
Vcc	Supply voltage	4.9	5.1	V
lcc	Supply current	38.0	45.0	mA
TEST-IN (SC)	TEST-IN voltage	2.8	3.3	V
X6-OUT (normal)	X6-OUT voltage	0	0.6	V
X30-OUT (normal)	X30-OUT voltage	0	0.6	V
ERROR-OUT (normal)	ERROR-OUT voltage	0	0.6	V
X6-OUT (activated)	X6-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
X30-OUT (activated)	X30-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
ERROR-OUT (activated)	ERROR-OUT voltage activated @5V, $1k\Omega$ (pull-up)*	4.9	5.1	V
TC1	Trip current 1 – X6	4.5	5.4	mA
TC2	Trip current 2 – X6	-5.4	-4.5	mA
TC3	Trip current 3 – X30@50Hz	20	30	mA
PWM-OUT (frequency)	PWM-OUT frequency	7.8	8.2	kHz
PWM-OUT (duty-cycle)	PWM-OUT duty-cycle @6mA DC	18	22	%
LV1	Limit values of break time - X6-OUT@6mA DC	0	700	ms
LV3	Limit values of break time - X30-OUT@30mA, 50Hz	0	300	ms


* the maximum values of collector-emitter voltage and current see "Absolute maximum ratings"


Product Tests:

	Acc. to VAC sheet M3238 Following tests differ from M3238:	passed
PD	4.5a: Damp heat, steady state. Duration: 1000 h IEC61000-4-1, EN60270, M3024 UPDE M3024, Partial discharge voltage (extinction) *acc. to table 24	1.5 kV rms
ESD	Air- and contact discharge; U= $\pm 2000V$, R= 1500Ω , C= $100pF$ Acc. to Human Body Model JESD22-A114	±2.0 kV
	IEC61000-4-3 (Radiated, radio-frequency, electromagnetic field immunity) 20V/m 80MHz – 1GHz 80%AM 1kHz, recommend with the use of inductance of >220µH in series of Vcc input.	passed
EMC	IEC61000-4-6 (Immunity to conducted disturbances), recommend with the use of inductance of >220µH in series of Vcc input.	passed
	IEC61000-6-4 (Emission standard for industrial environments, conducted disturbances)	Should be done in end application
A(f), Φ(f)	Amplitude and phase response over frequency 1% of I_{PN} or $I_{\Delta n}$	passed
Impulse test	Monitoring of CS function during the current phase test 100A to 5kA	passed
Editor.: R&D-PD-NPI D	Designer: MB MC-PM: BZ	Released by: SB

VACUUMSCHMELZE	Sp	Item no.:	Item no.: T60404-N4641-X90					
	Differential C acc. to the s			Date:	11.10.2021			
K-No.: 26574								
Customer: Standa	rd type					Page	5 of 7	
Regualification	Tests: (replicated e	verv vear. Prec	ondition acc. to M323	8)				
Ûw, prim-sec M30	Impu 64 PIN 1	lse test (1.2 -8 vs. insula	us/50 μ s waveform ated primary wire ty +, 5 pulse \rightarrow p	n)		5.5	kV rms	
U _d M30		voltage, 60s -8 vs. insula	ated primary wire			1.5	kV rms	
UPDE M30	Partia 24 PIN 1	al discharge	voltage (extinctio ated primary wire	n)		1.2	kV rms	
U _{PD} x 1.875 M303	24 PIN 1 *acc. t		voltage (extinctio ated primary wire	n)		1.5	kV rms	
* IEC 61800-5-1:200)7							
Other instruction	ons:							
- Vcc durin	ure of the primary g Test-IN function rise-time of Vcc 2.	test must be		I 105°C.				
Figures:								
		or ••••••		\				
		I _{ΔN2}		\backslash				
		ΔRI1 or						
				i l				
	_		:		\rightarrow_{t}			
	Output conditio				L			
	for X6-OUT	.	İ					
	and			High Z				
	X30-OU	r L			\rightarrow_{t}			
					-			
		Fig. 1: Mean	ing of switching r	ecovery level				
If the trip-level I _{ΔN1} /I _{ΔN2} is accomplished the output X6-OUT/X30-OUT will change it state from								
	low-level (GND) to high impedance. Depending on the existence of the differential curent I_{Δ} , the outputs X6-OUT/X30-OUT will remain in this state until I_{Δ} fell below recovery threshold $I_{\Delta RI1}/I_{\Delta RI2}$.							
				, .				
Editor.: R&D-PD-NPI I	D Designer: MB		MC-PM: BZ			Rolo	ased by: SB	
	sing it to third parties or using	the contents there f		ross written authorization by u				

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages